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Thermal magnetoconvection in a rapidly rotating spherical shell is investigated
numerically and experimentally in electrically conductive liquid gallium (Prandtl
number P = 0.025), at Rayleigh numbers R up to around 6 times critical and at
Ekman numbers E ∼ 10−6. This work follows up the non-magnetic study of convection
presented in a companion paper (Gillet et al. 2007). We study here the addition of a z-
invariant toroidal magnetic field to the fluid flow. The experimental measurements of
fluid velocities by ultrasonic Doppler velocimetry, together with the quasi-geostrophic
numerical simulations incorporating a three-dimensional modelling of the magnetic
induction processes, demonstrate a stabilizing effect of the magnetic field in the weak-
field case, characterized by an Elsasser number Λ < (E/P )1/3. We find that this is
explained by the changes of the critical parameters at the onset of convection as Λ

increases. As in the non-magnetic study, strong zonal jets of characteristic length scales
�β (Rhines length scale) dominates the fluid dynamics. A new characteristic of the
magnetoconvective flow is the elongation of the convective cells in the direction of the
imposed magnetic field, introducing a new length scale �φ . Combining experimental
and numerical results, we derive a scaling law U ∼ (ŨsŨφ)

2/3 ∼ Ũs
4/3(�φ/�β)

2/3 where
U is the axisymmetric motion amplitude, Ũs and Ũφ are the non-axisymmetric radial
and azimuthal motion amplitudes, respectively.

1. Introduction
We present in Gillet et al. (2007) (hereafter referred as Part 1) a study of rapidly

rotating nonlinear convection in a spherical shell, for both large and small Prandtl
numbers P = ν/κ (ν and κ are the kinematic viscosity and the thermal diffusivity,
respectively). Rapid rotation implies that at first order motions are invariant along the
rotation axis ẑ. We couple a centrifugal gravity experiment with a quasi-geostrophic
numerical model including a varying Coriolis parameter, β , that describes the motions
in the equatorial plane perpendicular to ẑ. β(s) = 2η/EH in its dimensionless form is
equivalent to the latitudinal variation of the Coriolis parameter that enters the β-plane
equations in shallow layer systems, with η the slope of the container boundary, H the
half-height of the fluid column and E = ν/Ωd2 the Ekman number (Ω is the rotation
rate and d is the gap between the outer and inner boundaries). For P � 1 most of
the kinetic energy is stored in large-scale retrograde zonal flows. Their amplitude U
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Definition [Units] Symbol Gallium Earth’s core

Density [kg m−3] ρ 6.1 × 103 ∼ 104

Kinematic viscosity [m2 s−1] ν 2.9 − 3.2 × 10−7 ∼ 10−6

Thermal expansion coefficient [K−1] α 1.3 × 10−4 ∼ 10−5

Thermal diffusivity [m2 s−1] κ 1.3 × 10−5 ∼ 10−5

Magnetic diffusivity [m2 s−1] λ 0.21 ∼ 1

Table 1. Physical properties of liquid gallium (Brito 1998) and their estimation for the
Earth’s core (Wijs et al. 1998; Secco & Schloessin 1989).

is much more intense than the amplitude of the non-axisymmetric radial motions Ũs

(definitions of the velocity norms are given in § 4). Assuming a Rhines length scale

�β ∼
√

U/β(s) (1.1)

for the width of the zonal jets (equation (4.3), Part 1), we have proposed the scaling
law

U ∼ Ũs
4/3, (1.2)

independent of the rotation rate (equation (4.7), Part 1). The length scale �β emerges
as a consequence of the reverse cascade of kinetic energy in β-plane turbulence
(Rhines 1975).

In the present paper the impact of an imposed magnetic field on the fluid flow
is investigated. We report an experimental study of nonlinear magnetoconvection
in a rapidly rotating spherical shell filled with liquid gallium (P =0.025), the
physical properties of which are summarized in table 1. The experimental study
is backed by numerical simulations using the quasi-geostrophic assumption and a
three-dimensional induction model. The apparatus described in Part 1 has been
modified to impose a current-free azimuthal magnetic field. As in the non-magnetic
study we use ultrasonic Doppler velocimetry to measure flow velocities in gallium.
Ekman numbers E down to 10−6 and Rayleigh numbers R = γα�T d4/κν up to 6
times critical have been reached experimentally (α is the thermal expansion coefficient,
γ is the centrifugal gravity gradient and �T is the temperature drop between the
boundaries). We consider a parameter domain where

(i) the amplitude b of the magnetic field induced by the fluid motion is extremely
small compared to the amplitude B of the imposed field, the magnetic Reynolds
number Rm = U�/λ being extremely small compared to 1 (U and � are typical
amplitudes for the velocity field and the vortex length scales, respectively; λ is the
magnetic diffusivity);

(ii) the Lorentz forces remain small in comparison with the Coriolis forces, as
measured by the Elsasser number Λ = σB2/ρΩ (σ is the electrical conductivity of
the moving fluid and ρ its density).

The marginal stability analysis of the rapidly rotating β-plane convection is
characterized by a thermal Rossby wave (Busse 1970; Roberts 1968) whose critical
values (Rayleigh number, wavenumber and pulsation) are governed by the modified
Ekman number E∗ = (ν + κ)/Ωd2. In liquid metals where P � 1 the thermal Ekman
number Eκ = E/P then becomes the control parameter. Soward (1979) and Fearn
(1979a , b) presented marginal stability analyses of rotating magnetoconvection,
describing how the thermal Rossby modes are modified as the Elsasser number
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increases. They dissociate the modified Rossby modes for Λ < E1/3
κ from the magnetic

or slow modes for E1/3
κ < Λ < O(1). These analyses have been confirmed and extended

by the coupled analytical and numerical study of Jones, Mussa & Worland (2003).
Nonlinear magnetoconvection has also been explored in three-dimensional

numerical studies, which often deal with relatively large Ekman and Prandtl numbers
(e.g. Olson & Glatzmaier 1995, E � 5 × 10−5 and P = 1; Zhang 1999, E � 10−3) far
from the range of parameters we aim to reach in this study. Cardin & Olson (1995)
performed a parameter study using a quasi-geostrophic approximation approach, with
varying 0.1 < Λ < 10 and E � 10−6 for P = 7, in the presence of an imposed magnetic
field that is azimuthal and does not vary with the distance from the axis. Although
fully three-dimensional nonlinear studies have required large E due to numerical
limitations, it is of interest to compare numerical simulations to experiments in
order to test the validity domain of numerical approaches. Comparison between
simulations and experiments also provides a unique opportunity to evaluate the effect
of very small magnetic Prandtl numbers Pm = ν/λ ( �10−6 for metallic fluids) in
magnetohydrodynamic fluid flows, and possibly deduce a way to parameterize in
numerical simulations the mechanisms associated with such a small number.

Few experimental studies of rotating magnetoconvection have been carried out,
however. Following the early work by Chandrasekar (1954), who proposed a
theoretical framework for the marginal instability problem, Nagakawa (1957, 1958)
first studied the onset of convection in a plane layer of mercury in the presence
of both rotation and a magnetic field. Aurnou & Olson (2001) reported heat-flux
measurements in a similar experiment but with gallium. A limitation of plane layer
convection is that it lacks an important physical ingredient of the planetary core
dynamics: the presence of sloping boundaries. Only then are zonal motions set up
and low-frequency Rossby waves can propagate. A few recent magnetoconvection
experimental studies have included this feature: Jaletzky (1999) focused on the
instability threshold in a rotating cylindrical annulus filled with a low-Prandtl-number
liquid. Recently, Shew & Lathrop (2005) have used a larger (and more rapidly
rotating) sphere filled with liquid sodium (P ∼ 0.01) and investigated both convection
and magnetoconvection in the nonlinear regime. Their data consist of measurements
of the temperature perturbations and heat flux. They imposed a magnetic field
aligned with the rotation axis ẑ, with Λ up to 2 × 10−4 � E1/3

κ . With increasing
Elsasser numbers they mainly noticed a change in the heat transfer distribution – an
increase in the equatorial region, together with a decrease at mid-latitude – which
they analysed as the effect of the bi-dimensionalization of the flow along the imposed
field lines.

Very little is known about the impact of the magnetic field on the quasi-geostrophic
dynamics. In this respect, our work is part of an ongoing research program, that
began with the experimental study of a single geostrophic vortex in gallium in a
transverse magnetic field by Brito et al. (1995, 1996). They noticed both a decrease
of the angular velocity and an increase of the vortex size as the Elsasser number
increases towards unity. In the present study we consider the parameter regime where
Λ < E1/3

κ , the so-called weak-field case.
The organization of this paper is as follows. The experimental set-up is described

in § 2.1. In § 2.2 we present a three-dimensional model of the experiment, and then in
§ 2.3 incorporate the Lorentz force into the quasi-geostrophic numerical model used
in the non-magnetic case (Part 1). In § 3 we describe the effect of the magnetic field on
the onset of convection. Then we compare in § 4 our magnetoconvection experiments
to computations in the nonlinear regime. We describe how the presence of a toroidal
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magnetic field modifies the scaling laws developed in Part 1. Finally our conclusions
are presented in § 5. For convenience, both cylindrical polar (ŝ, φ̂, ẑ) and spherical

coordinates (r̂, θ̂ , φ̂) are used throughout the description below.

2. The experimental and numerical models
2.1. The experimental apparatus and measurement techniques

The main characteristics of the experimental apparatus and measurement techniques
used in this paper have already been presented in Part 1 (see also Aubert et al. 2001).
We detail here how the experimental set-up has been adapted for magnetoconvection
studies. In order to impose a magnetic field on the experiments, we have formed a
solenoid from a copper wire that loops in and out of the inner cylinder and the
outer sphere, as sketched in figure 1: the coils are distributed uniformly in longitude
around the outer sphere. The solenoidal distribution of electrical currents imposes
on the liquid gallium flow a z-invariant toroidal magnetic field, varying in intensity
as B(s) = (µ0NI )/(2πs) for si � s � ro, with µ0 the permeability of free space, I the
electrical intensity circulating in the copper wire (up to 14 A with a precision of
0.1 A) and N =444 the number of loops. The intensity of the magnetic field can
be increased up to 3 × 10−2 T near the inner cylinder. The boundaries of the fluid
container are electrically insulating as there is a thin layer of cataphoresis (see Brito
et al. 2001 and Aubert et al. 2001) between liquid gallium and the copper parts (outer
sphere and central region of the inner cylinder).

In the only previously published experiment on nonlinear magnetoconvection
incorporating a β-effect, Shew & Lathrop (2005) used a measurement technique based
on the temperature perturbations in order to indirectly retrieve information on the
velocity field. We use here ultrasonic Doppler velocimetry to directly measure velocities
in gallium. An ultrasonic probe rotating with the sphere in the equatorial plane (see
figures 1(a) and 2, Part 1) emits an intermittent 4 MHz signal and receives a signal
that has been sent back by particles (gallium oxides). We assume that the velocity
field is nearly z-invariant due to rapid rotation. We have access to two components
of the velocity field from the ultrasonic measurements (see Part 1): the radial flow

us , from which we build the r.m.s. velocity profile Ũrad(s) = (〈[us − 〈us〉τ ]
2〉τ )

1/2, and
the mean azimuthal flow uφ , from which we build the mean zonal velocity profile

U zon(s) = 〈uφ(s, t)〉τ . We here denote by an overbar the average over φ, and by
〈. . .〉τ = (1/τ )

∫
τ
. . .dt the time average, where τ is typically a few hundred seconds.

A more complete description of the data analysis is developed in Part 1 and Gillet
(2004).

2.2. Mathematical model of the experiments

We model thermal magnetoconvection of a Boussinesq fluid between an outer sphere
(spherical radius ro) and a vertical inner cylinder (cylindrical radius si), in the presence
of an imposed toroidal magnetic field B(s)φ̂, the whole system rotating with a constant
angular velocity Ω ẑ. In order to mimic the experiment, gravity is cylindrical and
increases linearly in radius as γ s where γ =Ω2. We use no-slip boundary conditions
for the velocity field at the boundaries. The outer sphere is at constant temperature
To. The inner cylinder is at constant temperature Ti in its central part (|z| � ro/2),
and the radial heat flux vanishes (∂T (si)/∂s =0) for ro/2 � |z| � ro. The value of the
imposed magnetic field decreases as the inverse of s in the bulk of the fluid and is
zero outside as described in § 2.1.
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Figure 1. (a) Picture of the apparatus used in magnetoconvection experiments. The solenoid
that partly hides the sphere is built from a copper wire that loops in and out of the inner
cylinder and the outer sphere. (b) Meridional cross-section of the co-rotating sphere and inner
cylinder. The imposed z-invariant toroidal magnetic field is generated by the longitudinal
distribution of current I in a solenoidal electrical coil.

The continuity, momentum and heat equations are, in dimensionless form,

∇ · u = 0, (2.1)

du
dt

+
2

E
ẑ × u = −∇Π − R

P
(T − Tref)s ŝ + ∇2u +

Λ

E
j × B, (2.2)
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Definition Expression Gallium experiments Earth’s core

P , Prandtl ν/κ 0.022 − 0.025 ∼ 10−1

E, Ekman ν/Ωd2 9.7 × 10−7 − 2.9 × 10−6 ∼ 10−15

Eκ , thermal Ekman κ/Ωd2 3.9 × 10−5 − 1.2 × 10−4 ∼ 10−14

E∗, modified Ekman (κ + ν)/Ωd2 3.9 × 10−5 − 1.2 × 10−4 ∼ 10−14

R, Rayleigh α�T Ω2d4/κν 8.6 × 106 − 8.4 × 107 −
Pm, magnetic Prandtl ν/λ 1.4 × 10−6 ∼ 10−6

Λ, Elsasser σB2/ρΩ < 10−2 ∼ 1

Table 2. Values of the dimensionless parameters in the gallium experiment and in the Earth’s
core. Numbers are calculated from the physical properties listed in table 1. We use for the
Earth’s core d =2.3 × 106 m, Ω = 7.27 × 10−5 rad s−1 and B ∼ 10−3 T. The Rayleigh number of
the Earth’s core is not computed since only the superadiabatic part of �T is relevant.

dΘ

dt
+ u · ∇T ic

cond = P −1∇2Θ, (2.3)

where u is the velocity field, Π is the modified pressure, T is the temperature of
the fluid, Tref is a reference temperature, T ic

cond is the temperature conductive profile
which satisfies the boundary conditions described above (the superscript ‘ic’ stands
for an inner cylinder), Θ = T −T ic

cond is the temperature perturbation, j is the electrical
current density and B is the magnetic field. The dimensionless numbers in the set of
equations ((2.1), (2.2), (2.3)) are defined in table 2. These equations have been made
non-dimensional using �T = To − Ti as the unit of temperature, the gap d = ro − si as
the unit of length, and the viscous diffusive time d2/ν as the unit of time. The unit
of the magnetic field is B, the intensity of the imposed magnetic field at s∗ = 1.25 si

(corresponding to a cylindrical radius of 50 mm in the experiment where si =40 mm
and ro = 110 mm), where convection is the most active. The electrical density currents
unit is σνB/d , so that the unit of electrical potential is νB. From now on in the
paper, r0, si , To and Ti are non-dimensional.

2.3. Quasi-geostrophic flow/three-dimensional magnetic induction numerical model

In this section we incorporate the effect of magnetic forces into the two-dimensional
quasi-geostrophic model derived in Part 1. We then obtain a mixed quasi-
geostrophic flow/three-dimensional magnetic induction model of rapidly rotating
magnetoconvection. We need to introduce the Lorentz force term, the last term on
the right-hand side of equation (2.2), in the quasi-geostrophic approximation of the
momentum equation. We denote by U, � and b respectively the typical velocity
amplitude, length scale and induced magnetic field intensity. The magnetic Reynolds
number Rm = U�/λ is small in our experiments and b/B � O(Rm) < 10−3. As we
prescribe a current-free magnetic field, electrical currents are associated with the
induced field b only, through Ampère’s law

∇ × b = Pm j . (2.4)

We impose non-penetration boundary conditions on the electrical currents

j · n = 0. (2.5)

Thus we do not follow Busse & Finocchi (1993) or Petry, Busse & Finocchi (1997),
who noted that in the case of perfectly conducting boundaries the induced field b
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is z-invariant. We need here to describe the induced electrical currents in the entire
volume between the inner cylinder and the outer sphere. As Rm � 1, the electrical
field is irrotational and Ohm’s law is

j = −∇V + u × B, (2.6)

with V the electric potential. In this diffusive regime, the Elsasser number Λ is the
appropriate parameter to compare the magnetic force to the rotation force. It remains
small (Λ � 10−2, see table 2). Thus, as in Part 1, we base our numerical model on
the quasi-geostrophic approximation. As the Elsasser number is small, boundary
layers are of the Ekman type. Joule heating is neglected (like the viscous heating
in the Boussinesq approximation) and the heat equation in our quasi-geostrophic
flow/three-dimensional magnetic induction model remains identical to equation (3.12)
in Part 1. The Joule heating scales as σd3U2B2, which is of the order of 10−5 W for
U = 10−2 m s−1. It is negligible in comparison to the total heat flux, of the order of
102 W.

Since the imposed magnetic field is toroidal, it has no direct influence on the zonal
motions. Thus the Lorentz force does not appear in the equation for the zonal wind,
which remains identical to equation (3.11) in Part 1. Therefore, the only modification
we introduce to turn the convection model of Part 1 into a magnetoconvection model
is the introduction, on the right-hand side of the z-integrated vorticity equation (3.10)
in Part 1, of the term

Λ

E
〈∇ × [ j × B] · ẑ〉z (2.7)

due to the Lorentz force. Given the geometry of the imposed field (see § 2.1), we write
expression (2.7) as

−Λ

E

s∗

s2

〈
∂jz

∂φ

〉
z

= −Λ

E

s∗

s2

∂

∂φ

[
s∗ũs

s
− [V ]+H

−H

2H

]
, (2.8)

with H =
√

r2
o − s2 the half-height of the fluid column. We denote here by ũ the

non-axisymmetric flow, so that u = ũ + u = ũs(s, φ, t) ŝ + [uφ(s, t) + ũφ(s, φ, t)]φ̂ since
the axisymmetric radial flow vanishes in the quasi-geostrophic representation. We
consider in the quasi-geostrophic approximation that uz is linear in the z-direction
(Gillet & Jones 2006). Then taking the divergence of (2.6) we obtain the following
equation for V in the bulk of the fluid:

�V =
s∗

s
z

∂

∂s

(
ηũs

H

)
. (2.9)

We note that the quasi-geostrophic approximation requires that both the Rossby
number Ro = U/Ω� and the Elsasser number Λ are small. The slope η = −dH/ds =
s/H of the container boundary with respect to a plane perpendicular to the rotation
axis is also assumed to be small, η � 1, in order to derive the quasi-geostrophic
equations. It would be consistent with these assumptions to neglect terms that are
O(Λη) in the quasi-geostrophic momentum equation whilst the Coriolis term is O(η),
the inertial term is O(Ro) and the main magnetic term is O(Λ). As we use the
quasi-geostrophic model for O(1) values of η, we have chosen to keep these O(Λη)
terms that are required if the boundary condition (2.5) is to be satisfied.

The electric potential V in (2.9) is described with a finite difference decomposition in
the (r̂, θ̂)-plane and, like ψ and 〈Θ〉z, with a spectral decomposition in the φ̂-direction.
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It is antisymmetric with respect to the equatorial plane. Equation (2.9) is therefore
solved with a successive over-relaxation method (SOR) in the upper part of the fluid
cavity only. At each time step the value of V , calculated from the velocity field, is
introduced in the term associated with the Lorentz force and given in equation (2.8).
Finally, we obtain a quasi-geostrophic flow/three-dimensional magnetic induction
model in which the motions are described with a quasi-geostrophic approach whereas
the induced electrical currents are computed in the entire volume. An example of an
electrical potential distribution with the associated electrical currents is presented in
figure 2. As in the study of a geostrophic vortex in a transverse magnetic field by
Brito et al. (1995), the electrical currents j � u × B are nearly vertical: the currents
go up on one side of the vortices, and down on the other side. Near the boundary
of the container, electrical potential gradients ensure that the electrical currents are
deflected from the insulator (see equation (2.5)).

We evaluate now the magnitude of the non-axisymmetric radial motions as

Ũs = max {Ũrad(s)}, and the magnitude of the axisymmetric azimuthal flow as
U = max {−U zon(s)}. These can be computed from both our ultrasonic Doppler
velocimetry measurements and the numerical model. The magnitude of the non-
axisymmetric azimuthal motions is only accessible numerically. To be consistent with

what can be done experimentally (see § 2.1), it is evaluated as Ũφ = max {Ũazi(s)},
where Ũazi(s) = (〈[ũφ − 〈ũφ〉τ ]

2〉τ )
1/2.

3. Onset of rapidly rotating spherical convection in the presence of an imposed
azimuthal magnetic field

Fearn (1979 b) and Soward (1979) have developed a local asymptotic theory of
convection in a rotating sphere permeated by a magnetic field. They have found that
adding an azimuthal magnetic field delays the onset of convection as long as

Λ < O
(
η2/3E1/3

κ

)
. (3.1)

In this regime, the frequency ωc of the critical mode decreases as Λ increases. The crit-
ical mode is a modified thermal Rossby wave that propagates in the prograde direction.
For higher values of Λ, while the pulsation still decreases, inertial and viscous processes
become negligible and the magnetic field has a destabilizing effect, convection
appearing for a lower R as compared to the rotating case without magnetic field.

We now discuss the onset of magnetoconvection as predicted from our computations
based on the quasi-geostrophic approximation of the momentum equation and a fully
three-dimensional model of the induction effects. We compare our results with the
local asymptotic theory and with the conclusions of Petry et al. (1997), who studied
magnetoconvection in an annulus with inclined, perfectly conducting boundaries and
stress-free conditions for the velocity. Figure 3 illustrates how the critical parameters
depend on the Elsasser number. A maximum of Rc is found close to Λ = E1/3

κ , as
expected from the asymptotic analysis. Both the wavenumber and the pulsation at
onset of magnetoconvection decrease when the Elsasser number increases. There is
a progressive transition from a modified thermal Rossby mode to a magnetic mode
(a Rossby wave driven by buoyancy against magnetic diffusion instead of thermal
diffusion).

Figure 4 gives examples of the vorticity structure at the onset of convection and
magnetoconvection. The azimuthal size of the convective cells increases as a function
of the imposed magnetic field. In Part 1 we had implicitly considered equal radial
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Figure 2. Snapshot of the spatial distribution of dimensionless electrical potentials and
associated electrical currents (white arrows), for P = 0.025, E = 1.95 × 10−6, Λ= 3.9 × 10−2

and R = 5 Rc . (a) The top outer boundary (viewed from above), (b) meridional cross-section
in the plane indicated by the dashed line in (a). The colour scale in (a) is the same as
in (b). Positive (resp. negative) isocontours are represented by solid (resp. dashed) lines. A
dimensionless potential of 600 corresponds to approximately 8µV .

and azimuthal length scales of the vortices. Here the Lorentz forces associated with a
toroidal magnetic field tend to oppose radial motions (omitting the effect of electrically
insulating boundaries, j × B ∝ −B2ũs ŝ). At onset azimuthal motions ũφ are therefore
favoured over the radial ones ũs . From the continuity equation, the geostrophic flow
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Figure 3. Evolution of the critical parameters for magnetoconvection, determined from our
numerical computations: Rc , mc and ωc (normalized to the non-magnetic case) as a function
of Λ, for E = 9.74 × 10−7 and P = 0.025. The grey symbols (respectively black) are from
calculations with (respectively without) the computation of the electrical potential V . The
dashed line is given by Λ= E1/3

κ .

satisfies ∂(sũs)/∂s + ∂ũφ/∂φ = 0, so that

Ũs

�s

∼ Ũφ

�φ

. (3.2)

We denote by �s and �φ the typical length scales of the vortices in the radial and
azimuthal directions respectively. As a consequence of the toroidal magnetic field, the
ratio �s/�φ must decrease with Λ. Added to the β-effect due to rapid rotation together
with a varying height H (s) (see Part 1), a second source of anisotropy is induced in
our system by the presence of a magnetic field.

The influence of the electrical boundary conditions on the critical values is
evaluated by comparison of a linear analysis with and without the computation of
the electrical potential V term in equation (2.8). The difference (see figure 3) remains
negligible in the weak-field case whereas a small stabilizing effect of insulating
boundaries is found for Λ > E1/3

κ (in contrast to the plane layer case (Aurnou &
Olson 2001) for which the numerical analysis of Zhang, Weels & Roberts (2004)
indicates a strong destabilizing effect of insulating boundaries). We note that this
is consistent with the quasi-geostrophic approximation approach that taking into
account the O(Λη) potential term in equation (2.9) does not significantly affect the
results. Our results – e.g. a destabilizing effect of the magnetic field, in a limited range
of Λ, at the experimental values of Ekman and Prandtl numbers – are consistent
with the conclusions of Petry et al. (1997), despite the specific details of their model.
We thus validate their more systematic exploration of the parameter space (with
variable direction of the imposed field).
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(a) Λ = 0

(b) Λ = 0.91Eκ
1/3

(c) Λ = 2.28Eκ
1/3

Figure 4. Snapshots of convection and magnetoconvection at the onset, obtained from the
quasi-geostrophic flow/three-dimensional magnetic induction: normalized vorticity maps in
the equatorial plane, for P = 0.025, E = 1.95 × 10−6, and different values of Λ.
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Figure 5. Ultrasonic Doppler velocimetry measurements performed during magnetoconvec-
tion experiments. (a) Transverse velocity profiles uχ (s, t) in mm s−1, as a function of time
and distance from the probe, with P = 0.025, E = 1.95 × 10−6 and R = 1.74 × 107. The vertical
dashed line near 140 s corresponds to the transition from Λ= 3.6 × 10−3 (R = 2.2 Rc) to
Λ= 0 (R = 2.6 Rc). The horizontal dashed line indicates the distance at which the transverse
beam line is the closest to the tangent cylinder (see figure 2, Part 1). The tilted black lines
are an artifact due to the electromagnetic noise. (b) R.m.s. radial velocity profiles Ũrad(s)
for E = 9.74 × 10−7. R = 7.93 × 107 is kept constant and Λ varies. (c) Zonal velocity profiles
U zon(s) for E =9.74 × 10−7. R = 6.06 × 107 is kept constant and Λ varies.

4. Nonlinear rapidly rotating spherical convection in presence of an imposed
azimuthal magnetic field

Following the studies by Or & Busse (1987) and Schnaubelt & Busse (1992) for
Λ =0, the magnetoconvection analysis of Petry et al. (1997) included the nonlinear
regime close to onset. They focused on the zonal wind generation just above onset
and concluded that imposing a zonal magnetic field does not significantly alter the
evolution of either the zonal flow or the heat flux as a function of the Rayleigh
number. As in the non-magnetic case presented in Part 1, we study here the nonlinear
regime for R/Rc < 6, but in the presence of an imposed toroidal magnetic field.

4.1. Impact of the magnetic field on the flow

For a given value of the Rayleigh number in the experiments, changes in the amplitude
of convective motions are observed as a function of Λ. As an example in figure 5(a)
the zonal velocity abruptly becomes stronger when we switch off the magnetic field.

The changes in the velocity profiles Ũrad and U zon are illustrated in figure 5(b, c). The
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Figure 6. Comparison of velocity measurements between convection and magnetoconvection
experiments: (a) r.m.s. radial velocity Ũs (in mm s−1) and (b) mean zonal velocity U (in
mm s−1) as a function of �T (in◦C), for P = 0.025, E = 2.92 × 10−6 (squares), E = 1.95 × 10−6

(circles), E =9.74 × 10−7 (triangles) and different Λ. The different greys giving the value of Λ
for E = 1.95 × 10−6 are similarly used for E = 2.92 × 10−6 and E =9.74 × 10−7.
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Figure 7. Comparison of velocity measurements between convection and magnetoconvection
experiments: (a) r.m.s. radial velocity Ũs and (b) mean zonal velocity U as a function of
(R/Rc − 1), for P = 0.025, E = 2.92 × 10−6 (squares), E = 1.95 × 10−6 (circles), E = 9.74 × 10−7

(triangles) and different Λ. The different greys giving the value of Λ for E = 1.95 × 10−6 are
similarly used for E = 2.92 × 10−6 and E =9.74 × 10−7.

magnetic versus non-magnetic experiments – with the other parameters E and R kept
fixed – show differences up to 25% in amplitude of convective and zonal velocities,

as illustrated in figure 6(a, b), which presents U and Ũs as a function of �T .
In the case of the non-magnetic rotating convection, the amplitude of the convective

motions scales at first order with (R − Rc). In rotating magnetoconvection, (R − Rc)
decreases as Λ is increased from 0 to E1/3

κ due to the stabilizing effect of the magnetic
field (see § 3). In the range of parameters covered by our experiments, the modification
of the onset of convection indeed suffices to explain the variation of the amplitude of

measured rms radial velocities Ũs , as seen in figure 7(a). We have unfortunately not
been able to exceed experimentally the Λ = E1/3

κ limit, and thus have not been able
to explore the destabilizing effect of the magnetic field. Figure 7(b) presents all our
mean measurements of the zonal flow. The increase of Rc with Λ explains part of
the decrease in U at constant R. However at R/Rc constant instead, a slight increase
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R/Rc being kept constant and Λ varying: (a) r.m.s. radial velocity profiles Ũrad(s) at R/Rc = 4.2
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Figure 9. Quasi-geostrophic flow – three-dimensional magnetic induction numerical recon-

struction of velocity profiles for magnetoconvection: (a) r.m.s. radial velocity profiles Ũrad(s)
and (b) zonal velocity profiles U zon(s), for E = 1.95 × 10−6, R/Rc = 3 and Λ/E1/3

κ = 0, 0.05,
0.45, 0.9 and 2.88 respectively.

of U with Λ may be detected, in particular in the experiments at E = 9.74 × 10−7.
Nevertheless the dispersion of the data points makes it difficult to draw conclusions.

Figure 8(a) presents several profiles of Ũrad(s) for a given value of R/Rc = 4.2 and
varying Λ. At first order we verify that all the profiles have similar amplitude. At
second order we detect a slight enlargement of the convective area as the magnetic field
becomes closer to E1/3

κ . That would suggest that the organization of the convection
is modified when E1/3

κ is approached, as will be detailed in § 4.3 with the help of our
computations. Similarly, no clear modification has been detected in the mean zonal
profiles as a function of Λ in figure 8(b), where R/Rc =4.

4.2. Comparison with the quasi-geostrophic flow/three-dimensional magnetic
induction simulations

We present in figure 9 typical radial profiles Ũrad and zonal profiles U zon for
several intensities of the imposed field (E and R/Rc kept constant), from quasi-
geostrophic flow/three-dimensional magnetic induction simulations. Approaching the
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Λ/E1/3
κ 0 0.05 0.45 0.90 2.88

Ũs 945 949 1051 970 556

Ũφ 996 1036 1124 1153 929
U 1815 2072 2496 2509 1954

Ũs/Ũφ 0.95 0.92 0.93 0.84 0.60

Table 3. Quasi-geostrophic flow/three-dimensional magnetic induction simulation of the r.m.s.
radial velocity Ũs , the r.m.s. azimuthal velocity Ũφ , the mean zonal velocity U and the ratio
Ũs/Ũφ , for P = 0.025, E = 1.95 × 10−6, R/Rc = 3 and several values of the Elsasser number,

respectively Λ= 0, 2.1 × 10−3, 1.9 × 10−2, 3.8 × 10−2 and 1.2 × 10−1.

limit Λ � E1/3
κ , we notice the emergence of a second maximum in Ũrad (figure 9a).

Meanwhile, the maximum of Ũrad migrates slightly towards larger radii, although its
amplitude remains constant. These characteristics are qualitatively in agreement with
the experimental radial measurements at the highest Λ (figure 8a). A displacement
of the minimum of the numerical zonal profiles towards the outer boundary is also
observed in figure 8(b). In these zonal profiles, the shape modification is accompanied
by an increase of the amplitude U . This suggests that the tendency observed in
our experimental measurements of U (figure 7b) may be significant. Figure 9 also
presents velocity profiles for Λ larger than E1/3

κ . It appears that the convection
intensity drops severely once convection starts from magnetic modes, with a decrease

in both velocities Ũs and U . The r.m.s. radial profiles also become increasingly
flat, suggesting that convection becomes relatively easier at larger radius, where the
magnetic field is weaker.

Figure 10 shows several numerical vorticity maps obtained with the quasi-
geostrophic simulations, illustrating convection patterns for Elsasser numbers both
lower and higher than E1/3

κ (the ratio R/Rc = 3 is kept constant). It shows that
vorticity isolines elongate along the magnetic field direction, in a way similar to what
we first noticed at onset (figure 4). This anisotropy in the vortices (�φ/�s increases
with Λ) is associated with a relative increase of the typical r.m.s. azimuthal motions

Ũφ compared to the r.m.s. radial motions Ũs . This point is illustrated in table 3 where

we see that Ũs is much more affected than Ũφ by the transition across E1/3
κ .

We also detect in figure 10 that convection intensifies at larger radius, where
the intensity of the magnetic field is weaker, as Λ is increased. This observation

is correlated with the modifications in Ũrad (shift of the maximum, and profiles
more flat) noticed in figure 9(a) as Λ exceeds E1/3

κ . We reach a maximum value of
Λ � 0.2 E1/3

κ in our experiments at E = 9.74 × 10−7 (the best documented case). In
the range of Elsasser number available experimentally, our numerical simulations
indicate an evolution of the critical wavenumber mc, from 17 in the non-magnetic

case down to 14 (see figure 3). We could expect an increase of both �φ/�s and Ũφ/Ũs .
The ultrasonic Doppler velocimetry measurements in our set-up are unfortunately
not precise enough to detect such a tiny modification in the azimuthal wavenumbers,
and a direct measurement of the r.m.s. azimuthal velocity ũφ was not available.

4.3. Impact of the magnetic field on the inertial scaling

The change in geometry of the vortices as we increase Λ (see figure 10) should induce
a deviation from the scaling law (1.2) obtained for U in the non-magnetic case. The
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Figure 10. Snapshots of convection and magnetoconvection obtained from numerical
simulation: normalized vorticity maps in the equatorial plane, for P = 0.025, E = 1.95 × 10−6,
R = 3 Rc and different values of Λ. The colour scale is from −0.1 (white) to +0.1 (black).
Superimposed on the vortices, the mean zonal flow is drawn with a black solid line as a
function of radius.
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equation for the mean zonal flow (equation (3.11), Part 1) can be written

∂uφ

∂t
+ ũs

∂ũφ

∂s
=

∂

∂s

[
1

s

∂

∂s

(
suφ

)]
−

√
roβ(s)

2sH
uφ. (4.1)

If Ekman friction balances the nonlinear term on the left-hand side of equation (4.1),
as in the convection case for P � 1, we obtain the estimation√

roβ(s)

2sH
U ∼ ŨsŨφ

�s

. (4.2)

The Rhines length scale which results from a balance between the Coriolis and inertial
forces in the vorticity equation (equation (3.8), Part 1), provides the radial extent �β

of the zonal jets. In the present case where the flow is dominated by its axisymmetric
part, �β is equivalent to the radial length �s of the vortices, as illustrated in the
vorticity maps in figure 10. Substituting �s in equation (4.2) by �β from equation (1.1)
leads to √

roβ(s)

2sH
U ∼

√
β(s)

U
ŨsŨφ, (4.3)

and finally ( ro

2sH

)1/3

U ∼
(
ŨsŨφ

)2/3

(4.4)

(to be compared with equation (4.6) in Part 1). As already noticed in Part 1 the
prefactor on the left-hand side is almost constant throughout the main part of the
liquid volume (except in the region very close to the equator). Using the estimation
(3.2) from the continuity equation, equation (4.4) leads to

U ∼
(
ŨsŨφ

)2/3

∼ Ũ 4/3
s

(
�φ

�β

)2/3

, (4.5)

which extends equation (4.7) of Part 1 to cases where anisotropy is present.
This scaling law (4.5) is a priori valid in any anisotropic system where �β differs

from �φ , like for example in the frame of β-plane turbulence (e.g. Galperin et al.
2004; Read et al. 2004). As we have barely detected this effect in our non-magnetic
study (see figure 13, Part 1), we have kept a simpler description with �β = �φ in Part 1;
in more turbulent fluid flows than those considered in Part 1, the scaling law (4.5)
might however be relevant even without the presence of a magnetic field. In our
present study, the imposed magnetic field appears to constrain �φ much more than
any non-magnetic effect.

The scaling (4.5) is tested numerically in figure 11(a), where U is represented as a

function of

√
ŨsŨφ for several Ekman and Elsasser numbers (we do not present U

as a function of Ũs

√
�φ/�β because it is difficult numerically to precisely determine

�φ and �β). For Λ = 0 the 4/3 law is verified for several values of E. For Λ �= 0
kept constant, the 4/3 trend does not seem to be influenced by the presence of the
magnetic field, below and above the limit E1/3

κ .
To illustrate the importance of the anisotropy of the velocity field, mainly induced

by the imposed magnetic field, we show on table 3 ratio Ũs/Ũφ as a function of
Λ. The increase or decrease of the zonal wind intensity with Λ, presented in that

table results from a trade-off between the decrease in Ũs as radial motions are
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Figure 11. Amplitude of the mean zonal velocity U as a function of the r.m.s. velocity
(ŨsŨφ)1/2, obtained from numerical simulations, for E = 1.95 × 10−6 (circles) and various Λ.
Simulations at Λ= 0 are shown for E =2.92 × 10−6 (squares) and 9.74 × 10−6 (triangles). The
dashed line comes from the scaling law (4.7) of Part 1.

impeded in the presence of an azimuthal magnetic field and the enhancement of the
φ-component of the velocity. At the largest magnetic field values reached in these

simulations (equivalent to Λ = 0.12), we find Ũs/Ũφ � 0.6, so that taking into account

the anisotropy in the scaling (4.5) for U corrects by a factor of 0.6−2/3 � 1.5 in this

specific case (i.e. a 50% correction in the zonal flow amplitude at a given Ũs). As

the Elsasser number becomes closer to unity, the ratio Ũs/Ũφ decreases, so that we
expect the effect of the anisotropy to become larger at larger value of Λ.

We have found numerically that the distinction between Ũs and Ũφ introduced in
(4.5) explains most of the variations in the zonal wind amplitude observed as we
increase the magnetic field intensity. We then conclude that the general picture for the
generation of zonal wind from nonlinear inertial processes, first presented in Part 1
for convection, remains valid for magnetoconvection once we take into account the
anisotropy introduced in the velocity field by the imposed magnetic field.

5. Discussion
We have explored thermal convection in a rapidly rotating sphere (E ∼ 10−6) filled

with liquid gallium (P = 0.025) permeated by a z-invariant toroidal magnetic field,
with an experiment backed by a mixed quasi-geostrophic flow/three-dimensional
magnetic induction numerical simulation. We have shown in Part 1 that for P � 1,
differential rotation – mainly a single retrograde jet – makes up most of the kinetic
energy in our experiment, even for R � 6Rc. This has enabled us to derive a relation
between the amplitude of the r.m.s. radial and mean zonal motions, in the framework
of the β-plane turbulence. According to this approach, the typical lateral extent of
the jet should increase with the convective forcing (reverse cascade).

Adding a magnetic field and increasing its intensity, we note a decrease of the
convective and zonal motions. In the experimental range of parameters, the effect
is explained by taking into account the impact of the toroidal magnetic field on
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the critical parameters only. The increase of Rc with Λ in the weak-field case,
estimated from our calculations, explains the diminution of the r.m.s. velocity. From
our numerical study of the onset (and in qualitative agreement with the asymptotics,
see Soward 1979) a growth of the vortices in the azimuthal direction is expected. The
anisotropy of the flow, as a result of the magnetic field geometry, is still predominant
in the nonlinear regime, and requires one to distinguish the radial length scale –
or Rhines scale – �β from the azimuthal length scales �φ . As a consequence the

scaling law U ∼ Ũs
4/3, proposed for the non-magnetic convection in Part 1, is modified

to U ∼ (ŨsŨφ)
2/3 ∼ Ũs

4/3(�φ/�β)
2/3. However, the β-plane turbulence can also induce

anisotropy, with cells elongated in the φ-direction (see for instance the Jovian vortices).
Thus the modification we have introduced in the present paper, because of the imposed
magnetic field geometry, could be of interest even in the non-magnetic case for strongly
turbulent flows. Note also that in presence of an imposed poloidal magnetic field,
both radial and zonal length scales might be affected, which makes the competition
between the different processes more complex.

We have experimentally documented the nonlinear magnetoconvection in the weak-
field case only. Studying the transition to magnetic modes would require an intensity
of the imposed magnetic field, keeping constant the rotation rate, three times larger
than what we have been able to achieve. Future magnetoconvection experiments
should include a magnetic field that is strong enough to be destabilizing. The rotation
rate should also be such that the wavenumber at the onset is large enough, so that
an inverse cascade can be documented for supercritical convection. We note that,
unfortunately, fluid metals that are good electrical conductors (sodium) are also good
thermal conductors. With these liquids, we could reach larger values of the Elsasser
number but the thermal Ekman number Eκ would be increased also.

The investigation of zonal flows in β-plane magnetoconvection is one step towards
the study of zonal flows in self-excited fluid dynamos. Most numerical dynamos using
no-slip boundary conditions present relatively weak zonal flows, which are governed
by thermal wind (e.g. Aubert 2005). This is in favour of α2 dynamos (Christensen &
Aubert 2006), as opposed to αω dynamos where the zonal shear plays an important
role. But one should keep in mind that numerical dynamos suffer from far too large
Ekman numbers and magnetic Prandtl numbers. As a consequence they do not offer
much space for several length scales to appear, thus inhibiting the complex role played
by inertia (see for instance Fearn & Rahman 2004), and also precluding mechanisms
such as the reverse cascade. The range of dynamics they can cover is thus limited,
and they do not apply to the secular variations of the Earth’s magnetic field at time
scales from 10 to 1000 years.

The study of these short time-scales requires a better understanding of mechanisms
such as the torsional oscillations (Dumberry & Bloxham 2003). The nonlinear
dynamics in relation to the magnetic field can be inferred from both the (u · ∇)u
and the j × B terms, in the presence of the dominant Coriolis force. Hide (1966)
derived long ago a quasi-geostrophic model of the core dynamics in the presence
of a magnetic field. There is still much work to be done to understand what would
replace, in the magnetic case, phenomena like the reverse cascade and its associated
length scale.
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Brito, D., Cardin, P., Nataf, H.-C. & Marolleau, G. 1995 Experimental study of a geostrophic
vortex of gallium in a transverse magnetic field. Phys. Earth Planet. Inter. 91, 77–98.

Brito, D., Cardin, P., Nataf, H.-C. & Olson, P. 1996 Experiments on Joule heating and the
dissipation of energy in the Earth’s core. Geophys. J. Intl 127, 339–347.

Brito, D., Nataf, H.-C., Cardin, P., Aubert, J. & Masson, J. 2001 Ultrasonic Doppler velocimetry
in liquid gallium. Exps. Fluids 31, 653–663.

Busse, F. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441–460.

Busse, F. H. & Finocchi, F. 1993 The onset of thermal convection in a rotating cylindrical annulus
in the presence of a magnetic field. Phys. Earth Planet. Inter. 80, 13–23.

Cardin, P. & Olson, P. 1995 The influence of a toroidal magnetic field on thermal convection in
the core. Earth Planet. Sci. Lett. 132, 167–181.

Chandrasekar, S. 1954 The instability of a layer of fluid heated bellow and subject to the
simultaneous action of a magnetic field and rotation. Proc. R. Soc. Lond. A 225, 173–
184.

Christensen, U. R. & Aubert, J. 2006 Scaling properties of convection-driven dynamos in rotating
spherical shells and application to planetary magnetic fields. Geophys. J. Intl 166, 97–114.

Dumberry, M. & Bloxham, J. 2003 Torque balance, Taylor’s constraint and torsional oscillations
in a numerical model of the geodynamo. Phys. Earth Planet. Int. 140, 29–51.

Fearn, D. R. 1979a Thermal and magnetic instabilities in a rapidly rotating sphere. Geophys.
Astrophys. Fluid Dyn. 14, 103–126.

Fearn, D. R. 1979b Thermally driven hydromagnetic convection in a rapidly rotating sphere.
Proc. R. Soc. Lond. A 369, 227–242.

Fearn, D. R. & Rahman, M. M. 2004 The role of inertia in models of the geodynamo. Geophys. J.
Intl 158, 515–528.

Galperin, B., Nakano, H., Huang, H.-P. & Sukoriansky, S. 2004 The ubiquitous zonal jets in
the atmospheres of giant planets and Earth’s ocean. Geophys. Res. Lett. 31, doi:10.1029/
2004GL019691.
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